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Agreement 

 

The contents of this Assessment Package are supposed to be use within one year, free of 

charge. The provision of this package is for assessment and testing. Once tested and verified, 

the customer shall acquire the Motion Estimator firmware in a chip to be boarded in the 

spacecraft. 

 

Results obtained using the contents of this Assessment Package are agreed and encouraged 

to be published, as long as referring to the name of Patchedconics, LLC.  



           Patchedconics, LLC 3 

Introduction 

 

Space debris have captured the attention of people both in and out of Space Industry. They 

impose a threat but are a natural consequence of the exploration of space. There are 

databases of tracked debris and collision risks can be assessed prior to launching a new 

spacecraft to space. Areas such as Low Earth Orbit (LEO) are specially packed with those 

debris due to heavy military, governmental and commercial usage.  

During the planning phase of a mission, methods to safely deorbit spacecrafts can be studied. 

Not always those methods are implemented, and satellites may become nonoperational, 

imposing risk for current and future spacecrafts. 

Spacecraft can also be designed with in-orbit servicing capability. This allows a “servicer” 

satellite to approach, dock and perform maintenance, such as refueling, of another spacecraft. 

Patchedconics has developed a technology that allows a satellite to identify, using the camera 

sensor available onboard, precious information on the attitude dynamics of an uncooperative 

target. Identifying parameters such as the direction of the angular momentum vector and 

inertia tensor is the key for allowing capture of debris or docking for servicing of satellites in 

orbit. To this end, estimating the inertial tensor of the target becomes essential. Most of the 

estimators cannot handle this issue, but the Motion Estimator of Patchedconics copes with it. 

 

The Assessment Package 
 

The purpose of this package is to provide an assessment tool for the Motion Estimator 

software to interested people.  

The Assessment Package is made of a Motion Simulator and a Motion Estimator. The first 

reads a set of initial conditions of target and observer and generates a set of projections of 

the points of interest in a frame representing a camera sensor for each time. The second 

receives a set of information, containing the projections’ locations on the frame, and 

estimates parameters regarding the attitude dynamics of the target. 

Two Motion Simulators are provided in the package, in Python and MATLAB/Octave, and each 

of them have differences in the operation method, which will be highlighted in this User Guide. 

The two of them are designed and tested in Windows 10 and macOS 11 environments.  
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Two Motion Estimators executables for each operational systems are included in the package. 

For each of the OS, each of the Estimators works for a specific configuration of the target.  

Arbitrary configuration of the target is built and defined by the users by modifying the 

Simulator codes, and the estimated results are obtained. 

The Motion Estimators are designed to be used with the Simulator included in the package 

and also with third-party simulators. A set of inputs and arguments must be provided for the 

Estimator to function properly, and those inputs will be discussed in this guide. 

 

What is Included? 

 

Assessment Package 

Operational System  
(chosen on download) 

Windows / macOS 

Simulators Languages MATLAB / Python 

Estimators* For Planar Markers / For Tetrahedron Markers 

 

The Assessment Package file structure is as follows: 

 

First Level:  (MEAP_[OS]) Where this User Guide is found. There are 3 folders: data 

is used by the package to transfer information between the Simulator and the 

Estimator, results is where the results of the simulation/estimation are stored, ME 

contains the Motion Estimators executables and auxiliary files. 

Second Level:  The ME directory contains two folders, 1 and 2. 1 is for the target 

configuration in which the markers are distributed on 1 surface. 2 is for the target 

configuration in which the markers are distributed on 2 surfaces. 

 
*For the better estimation results, this package provides two kinds of Estimators tuned for 

the specific markers layouts. One estimator is optimized for the markers on a single plane, 

while the other is optimized for the marketers on two planes (on a tetrahedron). 
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Motion Estimator 

 

As mentioned in the Introduction, two Estimators are provided for each OS. They are 

executable files which are exclusive to each of the supported markers configurations. The 

executable files can be called using the provided Simulators written in MATLAB and Python, 

as well as other simulators developed by the users, as long as the input format is respected. 

The Estimators for both macOS and Windows accept the same file format as input, and 

outputs in the same format. Each of the estimators shall be used with the specific markers 

configuration (planar or tetrahedral). 

The idea of the Motion Estimator is to provide to the observer with estimated angular 

momentum, L, angular velocity, w, and inertia tensor, I, given the information of the 

projection of 4 markers, which are fixed on the surface of the target, on a figure. The 

estimator also outputs the estimated position and orientation of the target. 

 

For Using with Third-Party Simulators 

 

The operation of the Motion Estimator in the Assessment Package can be described by a 

simple diagram: 

 

 
Figure 1: Assessment Package's Motion Estimator diagram 

 

Input is a set of data written as a comma separated CSV file with no header. It is composed of 

a single line containing the following information: 

 

Marker 
1, px 

Marker 
2, px 

Marker 
3, px 

Marker 
4, px 

I, L 
update, 

sec 

Start, 
sec 

Time, 
sec 

Interval, 
sec 

Memory, 
sec 

reset 

𝒙𝟏,𝒊 𝑦$,% 𝑥&,% 𝑦&,% 𝑥',% 𝑦',% 𝑥(,% 𝑦(,% 𝐼𝐿 𝑆𝑇 𝑡% 𝑑𝑡𝑒 𝐵 𝑟𝑒𝑠𝑒𝑡 

 

MOTION ESTIMATOR 

Input 

Arguments 
Output 
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• The markers are assumed to be identified, so 𝑥!,#, for example, is always the position 

in the X axis of the projection of Marker 1 [in pixels] 

• 𝐼𝐿  is the amount of stored Inertia Tensor (I) estimations required for the Angular 

Momentum (L) to be updated (we recommend using 𝐼𝐿 = 1) [in steps] 

• 𝑆𝑇 is the amount of time taken from 𝑡$ to the first estimation results (we recommend 

using 𝑆𝑇 = 0) [in seconds] 

• 𝑡#  is the time in which the projections were captured [in seconds] 

• 𝑑𝑡𝑒 is the expected interval, 𝑡# − 𝑡#%! [in seconds] 

• 𝐵 is time span of most recent estimations stored by the estimator (we recommend 

using 𝐵 to be near the nutation period or longer, but even shorter values shall work) 

[in seconds] 

• 𝑟𝑒𝑠𝑒𝑡 is a flag – when 𝑟𝑒𝑠𝑒𝑡 = 1 the information stored by the estimator is erased 

and when 𝑟𝑒𝑠𝑒𝑡 = 0  the estimator saves the information for current and future 

estimation. 

 

Arguments are 3 strings: 

 

Argument 1 Argument 2 Argument 3 

Input file name Directory Output file name 

 

In order to generate an output, the 4 markers must be visible. If one or more markers are 

hidden or out of the frame, the estimator returns same results as 𝑡#%! and waits for the 4 

markers are again visible to continue the estimations. 

 

Assumptions 

 

As mentioned in the previous section: 

• The 4 markers are assumed to be distinguished by the image processor. 

 

Additional assumptions are: 
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1 The 4 markers maintain their relative positions, meaning that the tetrahedron formed 

by the markers maintain its shape and size 

2 The projection is made in 2000 x 2000 pixels frame 

3 The positions of the markers in the frame have their origin at the center of the frame, 

so the edges of the frame are [-1000, -1000], [-1000, 1000], [1000, -1000], 

[1000, 1000] 

4 If any of the projections have X or Y components larger than 1000 or smaller than 

-1000, the marker is considered not visible. 

 

In case the markers form a different geometry than that specified on figures 2 and 3, the 

estimator will not work as expected. And in case the distances between the markers are 

different (different scale), the estimator will provide scaled information on the position of the 

target. 

Two version of each simulator are provided for each operational system. One assumes the 4 

markers are placed in 2 different surfaces (3 in a surface and 1 in the other adjacent surface), 

the other assumes the markers are all coplanar (all markers on same surface). For each of the 

cases, the user has to respect the markers geometry: 

 

1 Markers disposed on 2 surfaces: 

In the case of the markers being distributed in 2 

different mutually orthogonal planes, the 

configuration can be seen on figure 2. 

The coordinates are in meters, and this shape 

shall work with the provided estimator. 

 

2 Markers disposed on a single surface: 

In case of the markers being disposed in a 

coplanar configuration, the setup can be seen on 

figure 3. 

The conditions are the same as the 2 planes 

configuration and shape shall be kept. 

 

Figure 2: Markers configuration on 2 
different planes 

Figure 3: Coplanar Markers configuration 
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Each of the configurations shown above work with a specific Estimator. For the markers 

disposed on 2 surfaces use the set of files in the subfolder ME/2. For the markers disposed in 

a single plane, use the set of files in the subfolder ME/1. 

 

Limitations 

 

The Motion Estimator has a limitation regarding the angular velocity of the target. If the 

angular velocity is too large, the estimation will not provide reliable results. For such cases, 

we recommend decreasing the estimator interval so information is collected with higher 

frequency. 
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Motion Simulator 

 

Although the executable file of the Motion Estimator can be run using your own inputs, 

Patchedconics provides in the Assessment Package our own simulator in two languages: 

Python (MS.py) and MATLAB (MS.m). Right when you are provided with the Package, you can 

start performing simulations.  

The user may develop their own simulator with features like torque being applied to the 

target, collision leading to change of angular momentum, fragmentation of solar panels 

leading to change in inertia tensor. And the simulator provided can be used as a reference on 

how to generate the input file and call the executable of the Estimator. 

 

Target Properties 

 

The target spacecraft used in the simulator has a simple geometry composed of 3 cuboids: 1 

representing the main body, with dimensions a x b x c and 2 representing the Solar Array 

Panels (SAPs) with dimensions d x e x f (in the code f is named as g). The SAPs are connected 

to the main body’s top panel through one of their edges as seen on figure 4. 

 
Figure 4: Target geometry used on the provided Motion Simulator 

 

The 4 markers are disposed in the configurations seen on figures 5 or 6. On the first option, 

three of the markers are placed on the same surface (bottom) and one on an adjacent surface 

(front). In the second option, the markers are all placed in a single surface (bottom). 

front panel 

bottom panel 
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Figure 5: Position of markers on 2 surfaces of target used by the simulator 

 

 
Figure 6: Position of markers in coplanar option used by the simulator 

 
The Markers configurations seen on figures 5 and 6 (example models included in the 

simulators) are compatible with the marker geometries supported by the estimators, and the 

distances are measured in meters. 

 

MATLAB/Octave Version (Recommended) 

 

The MATLAB version of the Motion Simulator (MS.m) does not have a GUI, so variables shall 

be modified by the user directly in the script. 

We recommend using the MATLAB version of the software because it has shown to run more 

smoothly in the tests we performed, and the visualization of the results is improved when 

compared to the Python version. The MATLAB version also includes the option for the user to 

perform the simulation only, without the estimator, for verification purposes, and generating 

1 

1.5 1.5 

surface 1 surface 2 

1 
ed

ge
 

1 

1.5 1.5 1 

surface 1 surface 2 

1 

ed
ge
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a simple animation of the motion of the spacecraft (see figure 7). For performance purposes, 

we recommend not generating the animation of the markers when doing long simulations. 

 
Figure 7: Frame from MATLAB animation of markers' projections 

This function (MS) contains information to be modified by the user, such as spacecraft 

dimensions, initial orientation and distance from observer. The variables will be explained in 

this section. Some variables were already discussed in the Estimator input section, they are 

IL, ST, dte and B. 

 

There one limitation of the Octave version of the Simulator which did not allow the insertion 

of a header in the results file (results.csv). For this reason, we will specify what is each of the 

48 columns in the results file: 

t, Ixx_true, Iyy_true, Izz_true, Ixy_true, Ixz_true, Iyz_true, ⲱ1_true, ⲱ2_true, ⲱ3_true, L1_true, L2_true, L3_true, Ixx_est, 

Iyy_est, Izz_est, Ixy_est, Ixz_est, Iyz_est, ⲱ1_est, ⲱ2_est, ⲱ3_est, L1_est, L2_est, L3_est, “Markers hidden?”, 

“Estimator restart?”, Marker 1x, Marker 1y, Marker 1z, Marker 2x, Marker 2y, Marker 2z, 

Marker 3x, Marker 3y, Marker 3z, Marker 4x, Marker 4y, Marker 4z, DCM11, DCM12, DCM13, 

DCM21, DCM22, DCM23, DCM31, DCM32, DCM33 

 

Variables to be modified by the user 
 

dts: Simulator step size [seconds] 

dte: the expected time interval between information sent to the estimator [seconds] 

B: the time span of stored information by the estimator (recommended: same as nutation 

period of the target or larger) [seconds] 
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ST: the time taken for the estimator to perform first 

estimations (recommender: 0) [seconds] 

IL: the number of Moment of Inertia estimations 

required for next angular momentum estimation 

Moment of Inertia variable update (recommended: 

1) [steps] 

N: simulation time [seconds] 

f: camera sensor size (assumed to be square) 

[pixels] 

M: Mass of the main body of the target spacecraft 

[kilograms] 

Msap: Mass of each Solar Array Panel [kilograms] 

perr: pixel error (is multiplied by a uniformly distributed random number), which is the error 

on the pixel reading [pixels] 

point_animation: the user can choose whether to display an animation of the bottom and 

front surfaces of the target, as well as the markers (1 is yes, 0 is no) 

estimation: the user can choose whether to run the estimator (1 is yes, 0 is no) 

a, b, c, d, e, g: the spacecraft dimensions discussed previously, (g is the length f described on 

figure 4) [meters] 

theta: the angle which describes the position of the SAPs, as seen on figure 4, which makes 

the target symmetric in the ZX plane [rad] 

X, Y, Z: the position of the observer with respect to the center of mass of the target [meters] 

VX, VY, VZ: the velocity of the observer [meters/second] 

phi1, phi2, phi3: the initial Euler angles of the target (see figure 8) [rad] 

om1, om2, om3: the components of the angular velocity [rad/second] 

 

Python Version 

 

The Python version is also offered as a source code and it includes a Graphical User Interface 

(GUI), where the user can input the initial conditions for the simulator and select some other 

options. Figure 9 shows the GUI and the fields to be modified. 

Figure 8: Euler angles 
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One of the reasons why we recommend the use of the MATLAB code over the Python version 

is the runtime of the code, which is shorter on the MATLAB version.  

 
Figure 9: GUI of the Motion Simulator written in Python 

 

Simulator Functionality 

 

The simulator gathers all the parameters set by the user, adjust the position of the SAPs, 

calculates the Moment of Inertia (I), the center of gravity (Cg1), and generates an array 

containing all the points of interest on the target (vertices and markers), named cube in the 

scripts. We will refer to the variable cube as 𝑪 in this guide. We chose to base the simulator 

on quaternions, so the three-dimensional position of the points of interest are represented 

as [x, y, z, 1]. The MS function sends the important parameters to the pnp function which 

starts the simulation. 

 

The initial quaternion used is obtained by: 
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{𝒒3} = 5

𝑞!
𝑞&
𝑞'
𝑞(

7 =

⎩
⎪⎪
⎨

⎪⎪
⎧cos(𝜑&) cos(𝜑!) cos B

𝜑'
2 D

cos(𝜑&) sin(𝜑!) sin B
𝜑'
2 D

sin(𝜑&) sin B
𝜑'
2 D

cos B
𝜑'
2 D ⎭

⎪⎪
⎬

⎪⎪
⎫

 

 

where 𝝋 is the vector containing the Euler angles described in the variables section. The 

conversion from the quaternion to the direction cosine matrix is given by: 

 

[𝑸])* = N
𝑞!& − 𝑞&& − 𝑞'& + 𝑞(& 2(𝑞!𝑞& + 𝑞'𝑞() 2(𝑞!𝑞' − 𝑞&𝑞()

2(𝑞!𝑞& − 𝑞'𝑞() −𝑞!& + 𝑞&& − 𝑞'& + 𝑞(& 2(𝑞&𝑞' + 𝑞!𝑞()
2(𝑞!𝑞' + 𝑞&𝑞() 2(𝑞&𝑞' − 𝑞!𝑞() −𝑞!& − 𝑞&& + 𝑞'& + 𝑞(

&
P 

 

The derivation of the angular velocity 𝜔 can be obtained through Euler’s Equation in case no 

torque is being applied: 

 

𝝎̇ = −𝑰%𝟏𝝎× (𝑰𝝎) 

 

and the time derivation of the quaternion 𝒒3 is given by: 

 

𝑑
𝑑𝑥
{𝒒3} =

1
2
[𝛀]{𝒒3} 

[𝛀] = W

0 𝜔' −𝜔& 𝜔!
−𝜔' 0 𝜔! 𝜔&
𝜔& −𝜔! 0 𝜔'
−𝜔! −𝜔& −𝜔' 0

X 

 

where 𝝎 is the angular velocity vector, whose initial conditions are described in the variables 

section. 

 

We use a simple 4th order Runge-Kutta integration to calculate 𝝎,)-∆𝒕 and 𝒒3,)-∆, from 𝝎,)  

and 𝒒3,), knowing the moment of inertia 𝑰. For the angular velocity, 𝝎: 
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𝒌! = −𝑰%!𝝎𝒕𝟎 × Z𝑰𝝎𝒕𝟎[ 

𝒌& = −𝑰%! \𝝎𝒕𝟎 + 𝒌𝟏
∆𝑡
2 ^ × \𝑰𝝎𝒕𝟎 + 𝒌𝟏

∆𝑡
2 ^ 

𝒌' = −𝑰%! \𝝎𝒕𝟎 + 𝒌𝟐
∆𝑡
2 ^ × \𝑰𝝎𝒕𝟎 + 𝒌𝟐

∆𝑡
2 ^ 

𝒌( = −𝑰%!Z𝝎𝒕𝟎 + 𝒌𝟑∆𝑡[ × Z𝑰𝝎𝒕𝟎 + 𝒌𝟑∆𝑡[ 

 

𝝎,)-∆, = 𝝎,) + \
𝒌! + 2	𝒌& + 2	𝒌' + 𝒌(

6 ^ ∆𝑡 

 

And for the quaternion 𝒒3: 

 

𝒌! =
1
2	𝛀𝒕𝟎 	𝒒

3𝒕𝟎 	 

𝒌& =
1
2	𝛀𝒕𝟎 	𝒒

3𝒕𝟎 +
𝒌!
2 ∆𝑡 

𝒌' =
1
2	𝛀𝒕𝟎 	𝒒

3𝒕𝟎 +
𝒌&
2 ∆𝑡 

𝒌( =
1
2	𝛀𝒕𝟎 	𝒒

3𝒕𝟎 + 𝒌'∆𝑡 

 

𝒒,)-∆, = 𝒒3,) + \
𝒌! + 2	𝒌& + 2	𝒌' + 𝒌(

6 ^∆𝑡 

𝒒3,)-∆, =
𝒒,)-∆,
a𝒒,)-∆,a

 

 

Using the resulting quaternion, we can calculate the direction cosine matrix and from it, the 

position of the points of interest 𝑪,)-∆, following the relation: 

 

𝑪,)-∆, = 𝑹	𝑪,)  

 

𝑹 =

⎣
⎢
⎢
⎢
⎡
[𝑄])*!! [𝑄])*!& [𝑄])*!' 𝑃,)-∆,+
[𝑄])*&! [𝑄])*&& [𝑄])*&' 𝑃,)-∆,,
[𝑄])*'! [𝑄])*'& [𝑄])*'' 𝑃,)-∆,-

0 0 0 0 ⎦
⎥
⎥
⎥
⎤
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𝑷,)-∆,+ = 𝑷,) + 𝑽∆𝑡 

 

where 𝑷 is the translation between observer and target. 

The camera should have a 90º field of view (on the middle of the edge of the frame, which is 

f x f pixels, meaning the field of view is larger 

than 90º).  

The transformations of the markers’ positions 

found in 𝑷 to projections on the image 𝒁 were 

possible using the following equations: 

 

𝒀 = o
𝑓 0 0
0 𝑓 0
0 0 1

q 	𝑷 

 

𝒁 = W

𝑌!,!
𝑌',!s 𝑌!,&

𝑌',&s ⋯ 𝑌!,2
𝑌',2s

𝑌&,!
𝑌',!s 𝑌&,&

𝑌',&s ⋯ 𝑌&,2
𝑌&,2s

X 

 

There will be moments when the markers will be hidden by the structure of the spacecraft, 

we assumed that the main body is a cuboid, and the solar panels don’t interfere in the visibility 

of the markers. In fact, with the configuration proposed in the simulator, the solar panels are 

never interfering in the visibility of the markers.  

To help us knowing when the markers are visible or not, two auxiliary vectors are in the 𝑪 

array. These auxiliary vectors are normal to the surfaces containing markers. If the angle 

between the line from the observer to a marker and the auxiliary vector correspondent to the 

surface containing that marker is 90º or smaller, the markers on that surface are invisible. 

In the Simulators provided, we change the value of Marker 1 projection X component to 2000 

if any of the markers is invisible. If any of the markers’ projections has a component larger 

than 1000, the Estimator knows one of the markers is not visible and starts a hold state, 

resuming the estimations when all the markers are again visible. 

  

90°	

observer 

Figure 10: Field of View 
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